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Abstract

Reconstructing object geometry and material from mul-
tiple views typically requires optimization. Differentiable
path tracing is an appealing framework as it can repro-
duce complex appearance effects. However, it is difficult
to use due to high computational cost. In this paper, we
explore how to use differentiable ray tracing to refine an
initial coarse mesh and per-mesh-facet material representa-
tion. In simulation, we find that it is possible to reconstruct
fine geometric and material detail from low resolution input
views, allowing high-quality reconstructions in a few hours
despite the expense of path tracing. The reconstructions
successfully disambiguate shading, shadow, and global illu-
mination effects such as diffuse interreflection from material
properties. We demonstrate the impact of different geometry
initializations, including space carving, multi-view stereo,
and 3D neural networks. Finally, with input captured using
smartphone video and a consumer 360◦ camera for lighting
estimation, we also show how to refine initial reconstruc-
tions of real-world objects in unconstrained environments.

1. Introduction
Reconstructing digital representations of the appearance

of objects is important to many industries, including visu-
alization, cultural heritage, and entertainment. At a min-
imum, this task requires estimating the shape of the object
via its surface geometry, and estimating the material appear-
ance properties of the object. Recreating these properties
accurately by hand requires skill and labor, so automatic re-
construction techniques are useful to complete this task.

Many techniques have been proposed with a common
high-level approach: capture multiple views of the object
with an imaging sensor, often under varying illumination,
to describe the underlying geometry and material properties

under appearance assumptions. These techniques can be
forward or ‘bottom up,’ by directly estimating object prop-
erties from observed sensor data, or can be inverse or ‘top
down,’ by optimizing an underlying model until its render-
ing is consistent with the captured sensor data.

For bottom-up methods, multi-view stereo approaches
directly estimate the depth of points on the object surface
from calibrated RGB cameras, under a Lambertian surface
reflectance assumption. Time-of-flight and structured light
sensors can also directly estimate depth under simplified re-
flectance assumptions; depth point clouds can then be fused
into volumes for surface reconstruction. Photometric stereo
approaches use RGB cameras to directly estimate surface
normal directions from objects exposed to light from dif-
ferent directions, typically with non-spatially-varying sur-
face albedo and Lambertian or restricted BRDF reflectance
models. These material reflectance assumptions cause limi-
tations or inaccuracy in complex shape and material recon-
struction. Further, methods may also be limited by their
light transport assumptions, e.g., that no diffuse interreflec-
tion exists for Lambertian materials.

Top-down approaches suffer these problems in reverse,
as the renderer must be able to accurately reproduce the
appearance of objects under as few assumptions as possi-
ble for shape, material, and light transport. While realistic
rendering is possible, any renderer must also be efficient
to use in optimization to fit a model to the captured cam-
era view. That is, it must provide gradients which describe
the direction of error with respect to the object’s shape and
material. As such, many differentiable renderers support
only simplified camera and geometry (e.g., simplified visi-
bility [26, 34]), simplified material (e.g., diffuse only [14]),
or simplified light transport (e.g., rasterization [41]).

However, differentiable path tracing methods [18, 30]
capable of simulating global illumination can reproduce
and optimize complex appearance with fewer assumptions
about geometry, material, and light transport. Path tracing is
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a theoretically elegant approach, but its application to multi-
view object reconstruction is difficult in practice due to the
computational complexity of computing derivatives with re-
spect to the object’s shape and material properties.

In this paper, we investigate how to reconstruct an ob-
ject from multi-view images via differentiable path trac-
ing. Given multiple calibrated views of an object under
known lighting, represented either by point lights or an
HDR environment map, we explore how to reconstruct both
the 3D geometry of the object as a surface mesh and the
surface material as a spatially-varying Torrance-Sparrow
BRDF model. We refine an initial coarse mesh, produced
by any one of a variety of reconstruction methods, at the
triangle level with a mesh colors SVBRDF representation.
This combination provides coarse-to-fine optimization of
both shape and material through geometry subdivision, sim-
plification, and remeshing stages.

We discover with simulated objects that this approach
can reconstruct fine geometric and material detail from low-
resolution (128×128) target camera views. These recon-
structions include the disambiguation of shading and shad-
ows from material variation, the disambiguation of global
illumination effects on surface albedo like color bleed-
ing from diffuse interreflection, and the reconstruction of
spatially-varying materials with different roughness and
specularity. Our efficient representations provide recon-
structions within a few hours of optimization, versus naive
approaches which can settle at incorrect local minima dur-
ing gradient-based optimization for inverse rendering.

In addition, we use physically-based differentiable path-
tracing to reconstruct from nearly-unconstrained unstruc-
tured real-world data. Given only a hand-held smartphone
camera video of a target object and an environment map
captured by a consumer HDR 360 camera, we explore the
challenging problem of reconstruction ‘in the wild.’

In short, we show that efficient representation and opti-
mization of surface geometry and material makes differen-
tiable path tracing a promising technique for high-quality
object reconstruction. We contribute:

• An investigation into benefits, limitations, and design
choices (e.g., parameter space, optimization ordering,
and initialization choices) for applying differentiable
path tracing to joint geometry/SVBRDF reconstruc-
tion in both simulated and real-world settings.

• A differentiable mesh colors texture representa-
tion [48] suitable for optimization problems involving
meshes with continually-evolving topology.

Our code and real-world data is available at
http://www.github.com/brownvc/shapefromtracing. This
includes our implementation of mesh colors [48, 27], which
to our knowledge has no prior public implementation.

2. Related Work

We focus our discussion on differentiable rendering as
applied to inverse problems and on methods which recover
shape and spatially-varying non-diffuse material.

2.1. Differentiable rendering

With aims to optimize through or “invert” the rendering
process, the past decade has seen many efforts to develop
renderers which are differentiable in output pixels with re-
spect to different input scene properties [26, 34, 22, 3, 10].
Modern deep learning toolkits such as Tensorflow and Py-
torch3D also now provide differentiable rendering, cur-
rently through rasterization [41, 33]. These renderers oper-
ate on mesh representations of 3D geometry; parallel efforts
have also explored differentiable variants of ray marching
for rendering implicit surfaces [12, 23, 25, 38, 28]. All of
the above consider either only geometry, or geometry plus
local illumination. Recently, differentiable formulations of
global illumination rendering have been proposed, resulting
in physically-based inverse renderers [18, 30, 49].

Differentiable renderers have been used to fit morphable
human face models to images [7, 4] and to optimize for
more general classes of objects [47, 22, 3, 32], to acquire
materials [19] and optimize for effects like caustic reflec-
tions [30], paired with an encoder to predict subsurface scat-
tering parameters [2] and to simultaneously estimate mate-
rials and lighting in 3D scenes [1]. We show that geometry
and material refinement via differentiable physically-based
rendering can account for complex light transport effects.
This strategy also makes it feasible to reconstruct real-world
objects exhibiting reflections, specular highlights, and soft
shadows, within unconstrained environments, given cali-
brated views and an HDR environment map.

2.2. Geometry and material reconstruction

Many works reconstruct geometry and material; we re-
fer to Weinmann et al. [42] for a recent review. Geometry
methods include multi-view stereo [37, 11] techniques to re-
construct point clouds with diffuse color, space carving [16]
techniques to reconstruct voxel volumes with diffuse color,
or photometric stereo techniques to reconstruct surface nor-
mals [43, 17] and spatially-varying specular materials [8].

Some approaches reconstruct complex material with
simplified geometry. Lin et al. [21] present a shape-agnostic
method for on-site BRDF capture, and Gao et al. [5] use
data-driven methods to reconstruct SVBRDFs under planar
assumptions. Other methods implicitly perform reconstruc-
tion via view synthesis. Xu et al. [46] use data-driven pho-
tometric stereo to generate new views from sparse views,
which then drive reconstruction via multi-view stereo [35].
Li et al. [20] present a learning-based method to reconstruct
SVBRDF and geometry from a single image.

http://www.github.com/brownvc/shapefromtracing


Figure 1. Proposed steps for simul-
taneous geometry and spatially varying
material reconstruction via inverse path
tracing. Given input views of an object
under known lighting, our pipeline be-
gins with a coarse shape initialization,
produced through any one of a num-
ber of approaches such as space carv-
ing or multiview stereo. It then al-
ternates between material and geome-
try optimization, adjusting surface mesh
vertices and SVBRDF material texels
via stochastic gradient descent with re-
spect to path traced renderings of the
current reconstruction. This process is
made coarse-to-fine by the subdivision
of the surface geometry, which then im-
plicitly and automatically subdivides the
surface texture via a multi-scale per-
facet SVBRDF texture representation.

Other methods reconstruct spatially-varying BRDFs
with specular components and whole-object geometry. Tun-
wattanapong et al. [40] use a dense lighting capture setup
and turntable to simulate varying spherical harmonic envi-
ronment maps. Xia et al. [45] reconstruct geometry and
SVBRDF under unknown illumination from coarse ini-
tializations by using temporal traces of the reflected illu-
mination as the object rotates over time, though it can-
not handle interreflections or occlusions. Kang et al. [13]
use a controlled light box with matching synthetic train-
ing data to learn detailed geometry and SVBRDF recon-
struction, though it cannot handle interreflection and self-
shadowing. Most flexibly, Nam et al. [29] present a practi-
cal smartphone-based geometry and SVBRDF capture sys-
tem which uses interactive inverse-rendering, although the
system is constrained to blacked-out room with point illu-
mination. None of these approaches explicitly model global
illumination effects like interreflection and self-shadowing.

Some methods explicitly model interreflection. Lom-
bardi and Nishino [24] model multiple bounces of light
through path tracing and compute derivatives with respect
to reflectance and illumination. Geometry adjustment is
modeled from an initial depth fusion through a linear com-
bination of surface normals, which can inflate or deflate the
surface. Park et al. [31] model interreflection and Fresnel
reflectance in their learning-based recovery of scene prop-
erties from RGBD imagery, via surface light field and spec-
ular reflectance map reconstructions. Both approaches as-

sume accurate geometry initialization, while we include re-
sults on reconstructions from coarser initializations. Over-
all, the problem of simultaneous geometry and SVBRDF
capture under global illumination effects is still difficult.

3. Method
Figure 1 shows our exploratory reconstruction pipeline

based on differentiable path tracing. Starting with a set of
images captured from known viewpoints and under known
illumination, we propose a procedure which first constructs
an initial coarse estimate of object geometry using existing
methods, and then alternates between optimizing this geom-
etry and a mesh colors [48] spatially-varying material using
gradient descent with a differentiable path tracer. Our pro-
posed procedure has multiple sub-components; the remain-
der of this section motivates and describes each in detail.

3.1. Input

The input to our pipeline is a set of images of the tar-
get object plus the scene lighting, represented either by an
HDR environment map or a set of point lights. Images
are captured from known poses and under a known lighting
configuration as might be captured by a light stage [40] or
box [13], from a multi-view stereo setup with known cam-
era/light offset [29], or as frames from a low-dynamic-range
video sequence from a hand-held cell phone with known
environment lighting. Typically, the greater the number of
views or frames, the higher the quality of reconstruction.
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Figure 2. Degradation of reconstruction quality with decreasing
number of input views. As the number of views to constrain the
optimization decreases, more noise appears in the geometry recon-
struction. F1 score is computed with a tolerance of 0.01.

Figure 2 shows the effects of number of input views on re-
construction quality.

For scene lighting input, we use point lights to recon-
struct objects in simulation, and environment maps to re-
construct objects in real-world scenes. In the supplemen-
tal material, we investigate the effect of illumination model
(environment vs. point lights) on reconstruction quality. We
find that reconstruction is more accurate under point illumi-
nation than environment map illumination. However, envi-
ronment maps better model real-world scenes.

We only consider input image pixels covering the object
and mask away the image background. Masks can be cre-
ated manually or via classic or machine-learned image seg-
mentation. In simulation, we compute binary foreground
masks via a white albedo render of the relevant scene geom-
etry. For real-world imagery, we use the X101-FPN model
from detectron2, pretrained on the COCO dataset, to per-
form instance segmentation [44].

Similarly, image-space masks for separate materials that
appear in the same object (e.g., distinguishing a plastic bot-
tle from a metal bottle cap) are helpful for controlling the
material optimization landscape. These can be computed in
a variety of ways: manually, for finest precision, or cluster-
ing image pixels by their RGB color or normalized intensity.

3.2. Geometry Optimization

Given the above inputs, our approach is to alternate be-
tween optimizing the geometry and material of the recon-
struction. We detail the geometry phase of this alternating
minimization scheme: the representation, initialization, and
a multi-step approach to perform gradient-based refinement
on geometry while controlling its resolution and quality.

Representation We use a triangle mesh to represent ob-
ject geometry. First, it provides local control over geom-
etry, allowing for optimization to locally capture fine de-
tail. Second, it supports coarse-to-fine refinement, which
our optimization schedule heavily exploits. Third, it natu-
rally accommodates SVBRDF specification via a per-mesh-
facet representation. Finally, it facilitates highly-optimized

ray-surface intersection, which forms the bulk of path trac-
ing’s computational cost. The major limitation of a mesh, as
opposed to an implicit representation, is that it is more diffi-
cult to change topology during optimization. As we will see
later in this section, periodic remeshing during optimization
can overcome this difficulty.

Initialization Since our optimization is based on
gradient-based local optimization, it is important to start
with an initial mesh that captures large-scale topological
features to place the optimizer in the right basin of attrac-
tion. Possible initialization strategies are to start with a
simple proxy geometry, e.g., spheres or boxes, which can be
used in any setting but may require significant hand-tuning
to work well; or to leveraging existing bottom-up recon-
struction methods—these give more accurate initial results
but may make assumptions about the underlying scene.
We have experimented with the multi-view stereo pipeline
COLMAP [36], voxel carving, and ‘sphere clouds,’ which
we detail in the supplemental material.

Figure 3 illustrates the behavior of different initalization
strategies when refining them with our suggested procedure.
MVS produces the highest quality initializations and there-
fore the best reconstruction, but requires a large number of
input views (>100). Voxel carving operates more reliably
under a range of camera views (as few as six) at the cost of
some geometric detail. The sphere cloud approach, while
general-purpose, is least accurate. In the supplemental ma-
terial, we also explore refining initial geometry produced by
a deep-learning based reconstruction method.

Vertex optimization Given the initial mesh geometry, the
first (and core) step of the geometry phase is to optimize
mesh vertex positions x via gradient descent with respect to
a mean-squared-error loss:

L(x) = 1

n

n∑
i=1

(Mt
i · Ti −Mr

i ·R(x, ci))2

where Ti is the ith target image, ci is the ith camera pose,
Mt

i is the ith target mask,Mr
i is the ith mask of the current

reconstructed object, and R is a differentiable physically-
based rendering function. We use the differentiable path
tracer of Li et al. [18], as it provides gradients of output
pixels with respect to input geometry.

Subdivision To avoid poor local optima, we found that
coarse-to-fine optimization works well. We begin with a
low-resolution initial mesh, optimize its vertices, and then
increase mesh resolution once this optimization converges.
To increase resolution, we subdivide every triangular face
into four by splitting each edge at the midpoint. This ap-
proach helps balance the granularity of geometric and mate-
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Figure 3. Reconstruction results on different initializations. Top
row: initializations produced by multi-view stereo (Top Left),
voxel carving (Top Middle), and ‘sphere clouds’ (Top Right). Sec-
ond row: results of geometry-only optimization starting from each
initialization. Bottom row: difference (2× magnified) between the
final reconstruction and the target input image.

Input Mesh Surface Samples Output Mesh

No Remeshing With Remeshing

Figure 4. Effect of the remeshing step. (Left) A degraded mesh
mid-optimization. (Middle) Point samples on the exterior surface.
(Right) Poisson surface reconstruction on points. Artifacts disap-
pear and fine detail can be recovered by subsequent optimization.
The genus of the object changes from 0 to 1. (Bottom) Final out-
puts. Self-intersecting geometry degrades the reconstruction and
hinders further optimization. Both optimizations are initialized as
sphere clouds to emphasize behavior of this step.

rial detail at each iteration, preventing geometry from com-
pensating for missing texture detail and preventing texture
from ‘baking in’ geometric detail.

Simplification When increasing mesh resolution, we
would ideally control the size and stability of the param-
eter space, as well as the efficiency of optimization, by only
adding vertices to mesh regions that require finer detail.
Thus, we follow subdivision with mesh simplification. If,
after subdivision, the number of faces exceeds a threshold

D, we decimate the mesh using quadric error simplifica-
tion [6] until it has D faces remaining. D is initially set to
twice the number of faces, and increases by half the num-
ber of initial faces after every simplification step. While Xu
et al. [46] seek to avoid vertices distributed non-uniformly
across the surface of the mesh, we find that allowing this be-
havior facilitates estimation of more complex geometries.

Remeshing Due to Monte Carlo rendering noise and the
limited number of target images, gradient descent on vertex
positions can result in artifacts from which it cannot recover
(e.g., excess triangles in the interior of the mesh). To rectify
this problem, we re-generate the mesh by point-sampling
its surface via raycasting from the input viewpoints, fol-
lowed by a Poisson surface reconstruction [15] on the re-
sulting point cloud (Figure 4, bottom). This strategy also
allows our input mesh to be less sensitive to the target ob-
ject’s genus, i.e., the remeshing step can open holes in the
optimized mesh to match the target (Figure 4, top).

Shape From Shading Since we use multiple views, it
is possible that the quality of geometry reconstruction is
mainly due to the large percentage of the target object which
is seen in silhouette. We conduct an experiment to recon-
struct geometry in the absence of silhouette edges and from
shading only. The target object is a sphere with a divot that
does not affect the shape’s silhouette. Figure 5 shows re-
construction results for this case. Starting with an initial
sphere mesh, our optimizer depresses the surface down to
just short of the target depth, demonstrating that concave
surface detail can be accurately captured. This behavior is
critical to reconstruct surfaces whose concavities cannot be
fully captured by silhouette-only initialization.

3.3. Material Optimization

In alternation with geometry optimization, we also opti-
mize for the material of the object. The remainder of this
section motivates and details each component of our mate-
rial optimization stage.

Representation We represent material as a Torrance-
Sparrow BRDF [39], a physically-based microfacet model
commonly used in material acquisition research [9]. It is
parameterized by a diffuse albedo and a specular roughness,
traditionally represented by UV-mapped textures. However,
UV maps are ill-suited for our setting as our mesh is con-
stantly changing, and we would need to simultaneously op-
timize the UV surface parameterization with the contents
of the texture image. Instead, we use mesh colors [48]:
an adaptive-resolution extension of vertex colors. This is
suitable for our optimization as it (a) provides an automatic
coarse-to-fine level of detail which is tied to the underly-
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Figure 5. Reconstruction of a sphere-with-divot, starting from a
sphere, using 5 cameras each with 4 light angles. With no silhou-
ette cues, from only shading information, our optimization pushes
down the divot to just short of the required depth, as demonstrated
by the difference image (right, intensity magnified 10x).

ing triangle mesh geometry, (b) does not require a surface
parameterization, and (c) is seamless by construction.

We modify the path tracing framework of Li et al. [18]
to support mesh colors. A mesh colors texture is stored in
a 1-D array a, the size of which is determined by the num-
ber of triangles in the mesh and an integer resolution level
r. Given the barycentric coordinates (α, β) of a point in
triangle number t, the texel for that point is

m(r, t, α, β) = a[k]

k =
t · (r + 1) · (r + 2) + i · (2r − i+ 3)

2
+ j

(i, j) = br · (α, β)c

This storage scheme duplicates edge and vertex detail for
parallelism at the slight cost of additional memory. We use
finite differences to compute derivatives.

Initialization We optimize texture maps in a coarse-to-
fine manner. For the first five optimization cycles, we opti-
mize for a single spatially invariant diffuse color and specu-
lar color per material. Using a low-degree-of-freedom ma-
terial representation while the geometry is initially refined
prevents the material from ‘baking in’ appearance effects
from small-scale geometry. To distinguish between materi-
als, we use per-material image-space masks to segment dis-
tinct materials. To correct for any inconsistencies in cluster-
ing from view to view, we determine which vertices belong
to each material cluster by counting which material they are
assigned to most often in image-space.

Every time the mesh changes topology (i.e., after a
remeshing step), we re-optimize from a neutral gray color
to avoid bias towards previous errors in geometry or texture.

The texture loss is:

L(x,m) =
1

n

n∑
i=1

s∑
j=1

(Mi,j · Ti −Mi,j ·R(x,m, ci))
2

where colors or per-triangle texels m are optimizable, and
Mi,j is the jth material mask for the ith target image.

Spatially-varying Diffuse After the first five optimiza-
tion cycles, we expand the parameter space to allow a
spatially-varying diffuse material, initialized from the last
spatially invariant diffuse color, while keeping the single
specular value. We estimate areas where we expect specular
highlights to occur by rendering the geometry as a perfect
mirror and thresholding bright areas. Then we mask out
these bright regions from renders. This removes gradients
where specular highlights occur. As highlights vary from
target frame to frame and have high radiance, they other-
wise tend to ‘bake’ into spatially-varying diffuse texture.

Spatially-varying Specular For the last optimization cy-
cles, we optimize for a spatially-varying specular material.
As low-variance (and often constant) specular maps are a
common artistic choice, we add a variance penalty on the
specular mesh colors ms: L(x,m) = 1

n

∑n
i=1(Mi · Ti −

Mi ·R(x,m, ci))
2 + λVar(ms).

Effects of Global Illumination Previous differentiable
renderering-based reconstruction methods do not use global
illumination. We justify the use of global illumination by
investigating the effect of diffuse interreflection on material
estimation. We set up a virtual scene consisting of three in-
tersecting planes, each with a constant diffuse albedo: red,
blue, and white. The geometry is known, and we optimize
a SVBRDF material for this geometry given a rendered tar-
get. We compare results to a version in which the renderer
uses only one-bounce illumination. Figure 6 shows the re-
sults. Optimization with global illumination correctly re-
constructs the ground-truth albedos, while the one-bounce
version explains the purplish floor (caused by color bleed-
ing) by baking this color into the ground plane’s albedo.

3.4. Optimization Details

Our optimization procedure alternates between solving
for geometry and material, switching once the loss has con-
verged. Optimization proceeds until the loss stops improv-
ing between successive cycles.

4. Results
In this section, we explore reconstructing complex object

geometry and material in simulation and from real-world
input. All results were produced on desktops with an AMD
Ryzen 2700X and an NVIDIA GTX 1080Ti.
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Figure 6. Material optimization using local vs. global illumina-
tion. Top: each strategy’s output—all quite similar. Bottom: unlit
albedo of each strategy. The local case (Bottom Middle) ‘bakes’
purple diffuse interreflection into the floor’s albedo, while a differ-
entiable path tracer disambiguates this effect (Bottom Right).
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Figure 7. Reconstruction of the Stanford dragon inside a Cor-
nell Box, with a glossy wood material. The image resolution was
128 × 128. Col. 2 shows initializations; Col. 4 shows a novel
view. Although the geometry reconstruction exhibits dense trian-
gle clusters, it is intersection-free: clusters are caused by our adap-
tive remeshing, which concentrates vertices in high detail areas.
Re-renderings were produced using the Blender Cycles renderer..

4.1. Reconstructing Simulated Objects

We test our findings on the task of reconstructing 3D ob-
jects with known geometry and material in simulation, us-
ing meshes varying in genus and texture patterns.

Table 1. Quantitative results for Figure 7. We report Chamfer dis-
tance and F1 scores between initialization/target (condition 1) and
reconstruction/target geometries (condition 2). We report PSNR
(Left) and SSIM (Right) between initialization/target and recon-
struction/target renders.
Object Cond. Chamfer F1 Full Diffuse Specular

Dragon
Init. 0.191 44.61 9.82, 0.69 10.44, 0.68 27.37, 0.70
Recon. 0.149 87.51 32.19, 0.91 33.89, 0.87 43.78, 0.98

Armadillo
Init. 0.158 47.97 12.16, 0.73 12.34, 0.72 28.94,0.69
Recon. 0.147 98.72 29.25, 0.89 26.58, 0.84 36.83,0.94

Buddha
Init. 0.172 47.97 15.20, 0.85 15.98, 0.84 22.47, 0.72
Recon. 0.155 87.68 31.96, 0.96 33.80, 0.94 32.24, 0.88

We use 32 cameras distributed on a Fibonacci sphere sur-
rounding the object within a Cornell box, with two light
position variations per view; one light is aligned with the
camera and another is placed at a constant offset of 1 unit
in the camera’s tangent direction. Using multiple light po-
sitions is critical to distinguish between geometric surface
details, diffuse albedo, and specular highlights. Figure 7
shows qualitative results (with additional results in supple-
mental material). Table 4.1 shows numerical results.

4.2. Reconstructing Real-World Objects

Most existing real-world methods requires objects be
photographed in HDR in a controlled environment, e.g.,
in a dark room with a few fixed lights. Here, we use dif-
ferentiable path tracing to address a more challenging ill-
posed scenario: an object casually-captured outdoors with
a smartphone video and a 360 camera HDR. This is a diffi-
cult setting for reconstruction as we assume no constraints
on illumination and only require a coarse estimate of scene
lighting and a sparse number of views with estimated poses.

Data capture We capture input views and lighting using
consumer hardware. For input views, we use a Pixel 3A
phone to record video of an object while walking around it,
using the built-in camera app and the H.264/AVC video for-
mat. For lighting capture, we place a Insta360 ONE camera
in the same position as the object, take an exposure bracket
of the environment, and fuse these into a HDR environment
map. The supplemental material shows our setup.

Reconstruction methodology We sample every 60th
frame of the video, use COLMAP to create the geometry
initialization and estimate each frame’s associated camera
pose, and align the environment map manually. To account
for different camera responses between real and simulated
cameras, we optimize for an environment map brightening
factor during the first round of texture estimation.

Results Fig. 8 shows results from our real-world recon-
struction experiment. Despite the relatively unconstrained
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Figure 8. Results from real world capture. We show two video frames from the smartphone camera (Col. 1), and the geometry initialization
(Col. 2). Our geometry estimations compare favorably against their initializations and space carving reconstruction (Col. 3): note the
entire upper half of the pepper shaker. We show our final reconstruction rendered under captured (Col. 4) and novel illumination (Col. 5).

capture set up, our prototype recovers spatially varying tex-
ture detail, and a more accurate geometry prediction as a
refinement to the COLMAP reconstructions. These recon-
structions do not recover the same level of detail that they do
in simulated environments; we expect some inaccuracy in
both geometry and SVBRDF predictions due to compound-
ing error in COLMAP’s camera calibration and our environ-
ment map alignment. Improving these parts of scene set-up
is required to recover finer-scale detail.

5. Discussion

Our investigations assume known camera positions and
some estimate of lighting conditions. This constraint might
be relaxed in the future with simultaneous optimization of
camera position, texture, geometry, and lighting. In addi-
tion, our optimizations require a reasonable initialization so
that differentiable path tracing can produce meaningful gra-
dients. As such, we see it as a refinement technique. Our
method is comparable in runtime to a dense COLMAP ini-
tialization, taking 3–5 hours depending on the resolution
and number of views. This is expected due to the natural
expense of path tracing and the added expense of backprop-
agating gradients. Recent ray tracing hardware may offer
improvements to differentiable path tracing speed. Finally,
our current mesh colors representation is not mipmapped or
anisotropically filtered, and these additions would improve
texture estimation across pixels of varied depth.

One avenue of future work is more complex materials,
especially those exhibiting ideal reflection/refraction, sub-
surface scattering, or volumetric effects. Another possi-
ble area of investigation is to raise the ceiling on object
reconstruction size, broadening the scope of possible tar-
gets from single small objects to larger scenes like rooms
and city landscapes. The sparsity of the mesh representa-
tion we use lends itself to such reconstruction tasks. This

would require a reevaluation of lighting environment and
viewing angle assumptions. Another possible direction is
how best to combine learned neural network priors with our
methodology to leverage the advantages of both. For in-
stance, learned priors can encode artistic intent and class-
specific patterns, while our approach recovers fine-scale ge-
ometry details. A hybrid approach could lead to flexible
physically-accurate reconstruction systems.

6. Conclusion

We have investigated how to use differentiable path trac-
ing to jointly estimate the shape and material of a 3D ob-
ject under known lighting conditions from a series of target
images. Starting from a coarse geometry initialization, we
alternate between texture and geometry steps and gradually
increase the parameter space for optimization. We moti-
vate pipeline stages with several experiments, and show that
optimizing over global illumination effects can help handle
interreflections and self shadows in reconstruction. We find
that optimization via a differentiable path tracer is a promis-
ing avenue of research for shape and material reconstruction
in unconstrained settings. Finally, we show that our method
can refine results on real-world data from largely uncon-
strained capture setups using smartphone videos.
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R. Garnett, editors, Advances in Neural Information Process-
ing Systems 32, pages 8293–8304. Curran Associates, Inc.,
2019. 2

[24] S. Lombardi and K. Nishino. Radiometric scene decompo-
sition: Scene reflectance, illumination, and geometry from
rgb-d images. 2016 Fourth International Conference on 3D
Vision (3DV), Oct 2016. 3

[25] S. Lombardi, T. Simon, J. Saragih, G. Schwartz,
A. Lehrmann, and Y. Sheikh. Neural volumes: Learning dy-
namic renderable volumes from images. ACM Trans. Graph.,
38(4):65:1–65:14, July 2019. 2

[26] M. M. Loper and M. J. Black. Opendr: An approximate
differentiable renderer. In D. Fleet, T. Pajdla, B. Schiele, and
T. Tuytelaars, editors, ECCV, 2014. 1, 2

[27] I. Mallett, L. Seiler, and C. Yuksel. Patch textures: Hard-
ware implementation of mesh colors. In High-Performance
Graphics (HPG 2019). The Eurographics Association, 2019.
2

[28] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron,
R. Ramamoorthi, and R. Ng. Nerf: Representing scenes as
neural radiance fields for view synthesis, 2020. 2

[29] G. Nam, J. H. Lee, D. Gutierrez, and M. H. Kim. Practical
SVBRDF acquisition of 3d objects with unstructured flash
photography. ACM Trans. Graph., 37(6), Dec. 2018. 3

[30] M. Nimier-David, D. Vicini, T. Zeltner, and W. Jakob. Mit-
suba 2: A retargetable forward and inverse renderer. Trans-
actions on Graphics (Proceedings of SIGGRAPH Asia),
38(6), Nov. 2019. 1, 2

[31] J. J. Park, A. Holynski, and S. Seitz. Seeing the world in a
bag of chips, 2020. 3

[32] F. Petersen, A. H. Bermano, O. Deussen, and D. Cohen-Or.
Pix2vex: Image-to-geometry reconstruction using a smooth
differentiable renderer. CoRR, abs/1903.11149, 2019. 2



[33] N. Ravi, J. Reizenstein, D. Novotny, T. Gordon, W.-Y. Lo,
J. Johnson, and G. Gkioxari. Pytorch3d. https://github.
com/facebookresearch/pytorch3d, 2020. 2

[34] H. Rhodin, N. Robertini, C. Richardt, H.-P. Seidel, and
C. Theobalt. A versatile scene model with differentiable vis-
ibility applied to generative pose estimation. In The IEEE
International Conference on Computer Vision (ICCV), De-
cember 2015. 1, 2

[35] J. L. Schönberger and J.-M. Frahm. Structure-from-motion
revisited. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2016. 2

[36] J. L. Schönberger, E. Zheng, M. Pollefeys, and J.-M. Frahm.
Pixelwise view selection for unstructured multi-view stereo.
In European Conference on Computer Vision (ECCV), 2016.
4

[37] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and
R. Szeliski. A comparison and evaluation of multi-view
stereo reconstruction algorithms. In Proceedings of the 2006
IEEE Computer Society Conference on Computer Vision and
Pattern Recognition - Volume 1, CVPR ’06, pages 519–528,
Washington, DC, USA, 2006. IEEE Computer Society. 2
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