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Figure 1. From a collection of images of an object with unknown camera pose, object pose, and illumination, and associated binary
segmentation masks, we reconstruct an implicit 3D Gaussian representation which is then used to generate a detailed 2D mask and texture
(Ours). This approach allows for rendering arbitrary camera pose, and matching lighting to a provided background image. PlatonicGAN [3]
(mid right) can generate inconsistent voxel reconstructions, and complex texturing is a challenge. HoloGAN [13] (far right) struggles to
represent high-quality masks, and training on texture can lead to less structured 3D spaces. Please view in Adobe Acrobat to see animations.

Abstract
We present an algorithm to reconstruct a coarse rep-

resentation of objects from unposed multi-view 2D mask
supervision. Our approach learns to represent object
shape and pose with a set of self-supervised canonical 3D
anisotropic Gaussians, via a perspective camera and a set
of per-instance transforms. We show that this robustly es-
timates a 3D space for the camera and object, while re-
cent state-of-the-art voxel-based baselines struggle to re-
construct either masks or textures in this setting. We show
results on synthetic datasets with realistic lighting, and
demonstrate an application of object insertion. This helps
move towards structured representations that handle more
real-world variation in learned object reconstruction.

1. Introduction
Recovering 3D object representations from unstructured

2D data in an unsupervised setting is an open problem.
Data contain camera pose variations, object pose variations,
lighting variations, background variations, and other innu-
merable differences to factor. Current image generation
methods employ geometric proxies with differentiable pro-
jection mechanisms to learn deep occupancy or appearance
vectors without camera pose supervision, often via voxels
like the recent HoloGAN [13] and PlatonicGAN [3].

We use a mixture of anisotropic 3D Gaussians as a coarse
implicit geometry proxy. This contains a canonical object,
plus per-instance camera and per-Gaussian transformation

parameters that describe camera and object pose. This rep-
resentation is compact vs. voxels, and still inherits correct
perspective projection properties. We assume only known
2D object segmentation masks as supervision (eliminating
the problem of unknown background), and demonstrate the
advantages of our representation on rendered data that con-
tains varying camera pose, object pose, and illumination.

By using reconstruction and self-supervised transform
losses, we can robustly estimate a representation that main-
tains a 3D space. Through training, our representation
learns to associate object parts with Gaussians without part-
level supervision. Additionally, we show that factoring ob-
ject pose variation into a canonical representation plus de-
formation parameters improves representation quality. We
use the learned Gaussians to condition RGB image genera-
tion, and show disentangling of pose, view-dependent tex-
ture, and shading variation caused by lighting. In compar-
isons to baseline methods (Fig. 1), we show that our repre-
sentation can lead to more consistent 2D texture generation
and higher-quality masks and RGB images. Looking for-
ward, such an approach may be a step towards more flexible
hybrid learned object representations that can model com-
plex real-world variation from natural image collections.

2. Related work
3D Object Representations. Learned 3D object rep-
resentations exist for taking 3D input data like point
clouds [1], volumes [15], or meshes [4] and generating
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3D output data. These include techniques to fit sets of
Gaussians to 3D shapes using 3D supervision [2], and
by combining 3D supervision with multi-view silhouette
losses [19]. Some works use pre-defined detailed canoni-
cal 3D meshes for 2D images [21], e.g., to learn surface pa-
rameterizations [7]. Other works learn representations from
2D input data via 3D representations, but require camera
information at training time [11]. For instance, DeepVoxels
[16] projects RGB values on known camera rays to learn a
deep voxel space that reproduces 2D inputs when projected
and decoded. Other works require object-specific pose data,
such as human skeletons [6]. Without camera poses, Lei et
al. build surface parameterizations for 3D objects [8].

For image generation, few works take only 2D input and
no camera or object pose information for supervision—this
is a harder problem as there is no explicit constraint on the
3D space. Liao et al. use cube and sphere mesh proxies
to represent multiple simple scene objects [9]. Schwarz et
al. generate radiance fields from unposed 2D images for
synthetic 3D objects [15]. HoloGAN uses a deep voxels
with an implicit rotation space [13], and PlatonicGAN uses
discrimination on random rotations to learn a generative
voxel space [3]. These two works are closest to our set-
ting, except we use an implicit 3D Gaussian representation
along with a conditioned 2D generator for fine-scale detail.

3. Learning Gaussian proxies for shape & pose
Input masks and anisotropic 3D Gaussians. We start
with a dataset of 256×256 binary segmentation masks m ∈
M of an object under varying unknown camera parameters
and object poses. We also require a given number K of
unnormalized anisotropic 3D Gaussians {Gk}Kk=1 (Fig. ??).
Each Gaussian Gk has mean vector µk ∈ R3 and covariance
matrix Σk ∈ R3×3 with its density declared as:

Gk(x) = exp
(
−(x− µk)>Σ−1k (x− µk)

)
. (1)

Camera. We also declare a general perspective pinhole
camera with intrinsic matrix K, rotation R, and transla-
tion t such that camera matrix P is represented as K[R, t].
To project a 3D anisotropic Gaussian into our camera’s im-
age plane to produce a 2D anisotropic Gaussian, we use
the analytically-differentiable perspective projection func-
tion π of Sridhar et al. [17]. This is valid for general
perspective cameras, unlike orthographic approaches [3] or
Gaussian-based approaches that are only valid under para-
perspective [19] projection models and so are less applica-
ble to real-world cameras. Please see supplemental material
for details of π. In our experiments, K is fixed across in-
stances and approximately matches that in the data.
Canonical Gaussians. Given a 256-dimensional con-
stant [5] as input, we use a fully connected network EGc to
predict the canonical 3D Gaussians Gck each parameterized
by a mean and covariance (µc,Σc) (Fig. 2, green, top).

Per-instance Gaussian transforms. Given an input mask
m, we extract a latent vector representing pose z ∈ R8 via
a convolutional encoder network Em. Then, from z, we
use a fully connected network to predict two transforma-
tions: 1) A camera transformation TO that moves the cam-
era with respect to the canonical model; in our experiments,
we mainly consider a yaw rotation Rφ. 2) K Gaussian lo-
cal transformations Tk consisting of scale, translation, and
rotation (sk, tk,θk) with each in R3 (Fig. 2, green, bottom).

Given the canonical parameters (µck,Σ
c
k), we obtain the

per-instance Gaussians Gk with parameters (µk,Σk) via:

µk = Rφ(µck + tk)

Σk = (RφRθkUkskSk)(RφRθkUkskSk)>, (2)

where Rθk is the rotation matrix form of θk, and Sk and Uk

are obtained via eigenvalue decomposition of Σc
k: Σc

k =
(SkUk)(SkUk)>. Sk is a diagonal matrix. The square of
its (j, j)-th entry represents the j-th eigenvalue of Σk. This
allows us to control the scale and rotation of each individual
Gaussian via the matrices Uk and Sk.
Conditional mask synthesis. Even a large number of
Gaussian proxies will fail to reconstruct sharp edges and
fine detail within a mask. As such, we use a condi-
tional mask generator Gm to add back the detail using up-
sampling transposed convolutions (Fig. 2, yellow). Given
the 3D Gaussians for an instance, we project them to 2D
Gaussians on the image plane of our camera: π(Gk) =
(µπk ,Σ

π
k ). Then, using the 2D version of Eq. 1, we sample

the density of each projected Gaussian on a raster grid to
create K Gaussian maps {gk}Kk=1. These are input to Gm

to condition the synthesis of predicted mask m′, which is
the learned reconstruction of m. We enforce a stronger ef-
fect in Gm by using layer-wise conditioning via Gaussian
maps at 322, 642, 1282, and 2562 resolutions.

3.1. Losses

We encourage our network to reconstruct an object using
multiple losses, with overall energy to minimize given by:

L(EGc , Em, Gm, Dm) = λ1LRec + λ2Lg+

λ3LĜ + λ4Lĝ + λ5LAdv + λ6LFM (3)

Reconstruction loss. We encourage synthesized mask
m′ to reconstruct input instance mask m with an L1 loss:
LRec(m,m′) = ‖m−m′‖1.
Density loss. Even though they cannot represent fine de-
tail in m, we still wish for all projected Gaussians to 1)
cover regions of the mask without overlap, and 2) cover as
much of the mask as possible. We encourage this via:

Lg(m, g) =
∥∥m− ΣKk=1gk

∥∥
1
. (4)

The sum over sampled 2D Gaussians is equivalent to a
grayscale version of the colored parts visualization in Fig-
ure 3. Here, both inputs are in the range [0, 1], and we take
g at our mask resolution of 256×256.
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Figure 2. Learning a K-part anisotropic
3D Gaussian representation from masks
m. Green: We combine a canonical rep-
resentation with scale, rotation, and trans-
lation transforms. Yellow: We project
these to K 2D maps. g conditions net-
workGm to generate a detailed mask m′

as a reconstruction of m. Blue: To learn
a meaningful 3D space, we self supervise
reconstruction by forcing a random rota-
tion of our estimated 3D Gaussians to also
produce a plausible mask m̂′ and for its
3D Gaussian prediction to be consistent
after the inverse rotation.

Self-supervised transform mask loss. We wish for the
3D space expressed through our recovered object Gaus-
sians and camera transform parameters in TO to be consis-
tent across varying camera views even though we only have
mask supervision. Thus, we randomly sample a 3D trans-
formation TR, again mainly as a yaw rotation, and apply
it via Eq. 2 to produce rotated 3D Gaussians Ĝ = (µ̂, Σ̂).
As before, these are then projected via π to 2D parameters
(µ̂
π
, Σ̂π), then sampled into 2D maps ĝ, and finally viaGm

to generate a mask m̂′ (Fig. 2, blue).
As m̂′ does not correspond to a known input instance,

we cannot directly enforce LRec. Instead, we encourages
the projected novel view Gaussians ĝ to be consistent with
the synthesized novel view m̂′ via a second density loss:
Lĝ(m̂′, ĝ) = ‖m̂′ −

∑K
k=1 ĝk‖1. Without this loss, g can

describe well the input mask m, but the rotated ĝ may not
describe well the generated mask m̂′.

Self-supervised transform inverse 3D Gaussian loss.
We can also pass m′ back through our 3D Gaussian pre-
diction stages (Fig. 2, green) to recover an estimate of the
proxies under random transform TR. Then, we can in-
vert this transform and penalize a loss against our initial
estimate of the 3D Gaussians. With slight notation abuse:
LĜ(G, Ĝ′) = ‖G − T−1R (η(m̂′))‖1, where η predicts 3D
Gaussians for a mask.

Adversarial loss. Training using only reconstruction
losses tends to produce blurry images, so we adopt adversar-
ial training. Gm attempts to generate realistic masks to fool
a discriminator Dm, while Dm attempts to classify gener-
ated masks separately from real training masks. Within this,
we also discriminate against our self-supervised transform
masks m̂′: these should also fool Dm. We use a hinge-
GAN loss LAdv for better training stability [10, 18, 12]:

LAdv(Gm, Dm) = Em̂′ [min(0,−Gm(m̂′))− 1]+ (5)
2Em[min(0, Gm(m)− 1)] + Em′ [min(0,−Dm(m′))− 1],

To reconstruct the 3D shape within a consistent world
space, along with m and m′, we find that it is sufficient to
give the discriminator a mask m̂′ generated from only one

random rotation per instance (as similarly found by Henzler
et al. [3]), rather than multiple random rotations.
Feature match loss. We improve sharpness by enforcing
that real and generated images elicit similar deep feature
responses in each layer l of the discriminator D(l)

M [14, 20]:

LFM(Dm) = Em,m′,m̂′

[
ΣLl=1

∥∥D(l)
m (m̂′)− D̄(l)

m (m)
∥∥2
2

+
∥∥D(l)

m (m′)− D̄(l)
m (m)

∥∥2
2

]
, (6)

where D̄(l)
m is the moving average of feature activations in

layer l, and L is the number of layers.
Loss Importance via Ablations We show the importance
of each component and loss term in Figure 3.

4. Experiments
Datasets. We path trace 3D objects into RGB images
and binary masks using ten real-world captured 360◦ HDR
lighting maps of outdoor natural environments. For each
image, we randomly rotate the camera around the up vec-
tor at a fixed radius away from the object (as per [13]). For
animated datasets with pose variation (120–400 frames), we
randomly sample frames. As sampling is random, each pose
is not seen across views or in any temporal or rotation order,
and we discard object and camera poses during training.
Results and Baselines. Across datasets, our approach
quickly learns a set of Gaussians. These condition our 2D
mask generation to produce highly-detailed silhouettes that
respect the 3D Gaussian space. The Gaussian representa-
tion is still usefully recovered as input data decreases 64×
in number, though detail in the mask reduces. For texture,
when silhouettes almost overlap across the projected 3D
space, such as front/back giraffe views, texture generation
can lose detail. However, variation across lighting is disen-
tangled from view and pose, allowing objects to be added to
backgrounds with matched lighting and with adjusted pose.
Please see our supplemental video for more results.

For 3D representation and image generation, we com-
pare to HoloGAN [13]. Even with many images, the voxel-
based HoloGAN struggles to generate high-quality masks

3



Input
mask m

Gaussians
G as g

Reconst.
mask m′

Rotate 240◦
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Figure 3. Ablations for giraffe. We use
different input masks per column as cer-
tain effects are only visible at particu-
lar angles. Gaussians are colored differ-
ently across columns. (a) Our full loss
model. (b) Without a reconstruction loss
on m′, the Gaussians only approximately
correspond to the input mask. (c) With-
out a density loss on g, the Gaussians
do not well represent the input mask, yet
Gm still produces the correct mask from
these less ‘coherent’ Gaussians. (d) Not
‘closing the loop’ in the self-supervised
loss hurts self occlusion cases or when
the 2D Gaussian layouts are not sufficient
to recover 3D information. (e) Not us-
ing a canonical representation at all fails
to rotate Gaussians recovered for thin
front/back views. (f) Not bounding the
per-instance transforms to reasonable val-
ues allows nonsense canonicals.

Input θ = 0◦ θ = 40◦ θ = 80◦ θ = 120◦ θ = 160◦

Figure 4. Generation across recovered angles, with any texture la-
tents fixed. For each object, the row ordering is as follows: Ours,
HoloGAN [13], PlatonicGAN [3]

when trained on just mask data (Fig. 1), with both part
errors (incorrect leg placement) and spurious mask region
artifacts. When trained on masked foreground if images,
which include lighting variation, HoloGAN struggles to
generate high-quality masks or texture, and the resulting 3D
space mixes variation of both kinds (Fig. 4, giraffe, manuel)
or fails to rotate the image at all (Fig. 4, maple).

We also compare to PlatonicGAN [3], which generates
voxel spaces per instance to handle class variation. How-
ever, this is not constrained to a canonical model and pro-
vides too much freedom to the method. We train it on
masked foreground if images, and the method outputs
masks as part of its process. PlatonicGAN is partly suc-
cessful at generating consistent voxels (Fig. 1), but intro-
duces geometry errors (misplaced legs, spurious content).
The method also sometimes learns to produce spaces with
‘double object’ impressions. Training on just masks fares
similarly. For texture, PlatonicGAN predicts a voxel color-
ing, which often fails to produce the correct output (Fig. 4).
Conclusion As we move toward ‘in the wild’ settings, we
need intermediate structures for arbitrary objects and train-
ing losses that can produce meaningful 3D spaces. We take
a step in this direction by implicitly reconstructing a coarse
Gaussian representation of object 3D shape and pose, and
show a potential use of our approach by conditioning 2D
texture generators in a setting where baselines struggle.
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