
Supplemental Material for
Shape from Tracing: Towards Reconstructing 3D Object Geometry and

SVBRDF Material from Images via Differentiable Path Tracing

1. Hyperparameters
To reconstruct each view, our differentiable path tracer

renders an image from the appropriate viewpoint with 64
samples per pixel using 2 ray bounces, beginning at a reso-
lution of 128× 128 pixels. Surprisingly, we found that this
low pixel count provides enough spatial resolution to recon-
struct detailed surface geometry and material appearance,
given a sufficient number of views. For our mesh colors
materials, we use a texture resolution level of r = 3, which
we found to be sufficient given our geometry subdivision
and simplification steps.

To perform gradient-based optimization, we use the
Adam optimizer [5]. In our experiments, geometry opti-
mization requires more fine-tuning than material optimiza-
tion, thus we use a step size of 10−2 for texture optimiza-
tion and 10−4 for geometry optimization. We also tune the
momentum hyperparameters for each of these stages:we set
the momentum parameters β1 = 0.5 and β2 = 0.99 during
material optimization, and use their default recommended
values during geometry optimization.

All results were produced on desktops with an AMD
Ryzen 2700X and a GTX 1080Ti using our variant of the
GPU version of Redner.

2. SVBRDF Comparison
Methodology To isolate and evaluate the material recon-
struction capabilities of differentiable pathtracing, we com-
pare with the work of Deschaintre et al. [4]. Here, we per-
form material optimization in a coarse-to-fine manner on
a planar surface perpendicular to an orthographic camera;
optimization starts at a resolution of 4×4 and increases to
256×256 in power of 2 increments. Lights positions are
sampled randomly from the surface hemisphere.

As the two renderers have different implementations of
the Torrance-Sparrow material model, we compare image
differences to the respective ground truth renderings in-
stead of comparing each method’s renders directly to each
other. Upon this, we evaluate MSE, PSNR, and SSIM on
re-renders as well as for normals and each of the individual
material maps.

Data We use the test set provided by the single-view
version [3] of the comparison work which consists of 38
spatially-varying BRDFs. Each material map is bounded to
the range [10−4, 1.0] to account for differences in treatment
of low roughness between material model implementations.

Results Coarse-to-fine texture optimization produces
comparable error in final re-renderings (black line, Fig. 1
right; qualitative results to left), with decreasing error in
material map reconstruction error as the number of input
views increases. We can also see that our method op-
timizes an incorrect ‘perfect’ re-rendering reconstruction
with just one view, as SVBRDF reconstruction does not
have a unique solution. This is expected given that our
choice of optimization loss function employs no prior, while
the comparison condition has a strong data-driven one.

There are trade offs between these two methods.
Whereas optimization through differentiable pathtracing
can produce better re-renderings and at arbitrary resolution,
the priors of Deschaintre et al. produce more plausible ma-
terial maps and allows faster test time. A natural question
is how to have the best of both worlds: high render ac-
curacy, speed, and well-behaved material maps. Theoret-
ically, training a neural network with a differentiable ren-
derer should yield a good initialization which could then be
improved by direct optimization using the same renderer.
We leave such an experiment for future work.

3. Shadow Art
The ability to optimize geometry to match the output of a

physically-based renderer has other applications other than
straightforward 3D reconstruction. One such application
is shadow art: producing geometry which casts particular
shadows when illuminated from specific angles. Prior work
has demonstrated computational tools for solving this prob-
lem, using either geometric optimization [6] or stochastic
search [7]. The geometry optimization step of our system
naturally supports shadow art production with only small
modifications: one simply changes the target images to
those of the desired shadows. We construct a scene with two
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Figure 1. Left: SVBRDF reconstruction of a spatially varying wood-like texture given 10 input views. Diffuse and specular albedo maps
have a gamma correction of 2.2 applied. Note the comparatively high variation of our material maps despite better re-rendering error. This
is due to the lack of a prior and the non-unique optimization landscape–particularly in the intertwined roughness and specular maps. Right:
Reconstruction metrics plotted as a function of number of input views. Our optimization benefits more from an increased number of views.
Note also the stabilization in output quality around 8–10 views. This occurs when it is no longer able to “cheat” in the optimization space
and perfectly capture particular view points.

shadow receivers: diffuse white planes orthogonal to each
other, forming walls like the corner of a room. Starting from
a sphere mesh with a radius of 0.25, we optimize the geome-
try so that it projects a desired shadows onto each wall when
lit from behind. As before, we use an image reconstruction
loss, in this application comparing the target shadow and
rendered shadow an the end of each iteration. Because the
cameras are positioned to only see the projection of the 3D
object onto 2D planes, the ground truth is ambiguous and
the mesh can converge to any one of many solutions, most
of which exhibit degraded geometry. In order to preserve
the quality of the mesh, we remove the self-intersecting ge-
ometry by applying the surface resampling and remeshing
step described in section 3.3 more frequently than we would
with more informative targets. Figure 2 shows an example.

4. Environment Illumination
We also demonstrate that our approach can reconstruct

under environment map lighting, too. Setup: Stanford
dragon under Grace Cathedral [2] illumination. Figure 3
shows results and compares to point illumination. More
general environment map lighting comes with slight degra-
dation of both material and geometry reconstruction.

5. Improving Neural Reconstruction
We use Pixel2Mesh++, a recent deep neural network

for converting multi-view imagery into a mesh [8], to re-
construct a couch from 3D-R2N2’s dataset of rendered

ShapeNet models. One issue with this deep reconstruction
network is that increasing the number of input views does
not significantly increase reconstruction quality, and so the
number of available input views is limited to three for train-
ing efficiency. As such, we use Wen et al.’s three-view net-
work which, according to the authors, performs closely to
models trained with more views. Then, we use this output
as initialization for our 32-view refinement (Fig. 4). While
we expect our refinement to capture more detail than the
network’s coarse approximation because we can exploit the
increased number of input views, we draw attention to how
our pipeline recovers from incorrect initial geometry. In this
way, our pipeline is a convincing post-process to learned
network priors.

6. Capture Setup
Figure 5 shows the capture setup we used to gather in-

put for our real-world reconstruction experiment. We use
a Pixel 3A phone to capture video by walking around the
target object, and we capture an environment map by fusing
together multiple exposure brackets taken using an Insta360
ONE 360 camera.

7. Effect of Ambient Occlusion
Here we investigate the effect of self-shadowing and am-

bient occlusion on geometry and diffuse material recon-
struction. We set up a virtual scene in which our cam-
era is focused on the surface of a sphere covered in small
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Figure 2. Shadow art example. The top row shows two target
shadows provided to our pipeline cast by meshes of a bunny and a
monkey, as well as the shadows cast by the mesh that we produce
cast onto two orthogonal white walls. The bottom two rows show
the output mesh at multiple views. Due to the regular resampling
steps, the mesh maintains a relatively smooth surface despite the
sparse target information. Note that because our pipeline produces
physically-correct shadows, our targets can contain gradients of
soft shadows. In contrast, prior work on computational shadow art
assumed binary mask images as shadow targets. Finally, because
we optimize through gradient descent and are constrained by only
two views, the output mesh converges to a different shape every
time , each of which can cast shadows that approximate the targets.
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Figure 3. Reconstruction under different illumination models;
point light (Top) and environment map lighting (Bottom). To ac-
count for the extra cameras used for multiple light views in the
former case (32 cameras with two different light positions), the
number of cameras was doubled in the latter (64). Difference maps
use a 2x multiplier. F1 uses a tolerance of 0.01.

bumps. In this case, we compare three strategies: full global
illumination, local illumination with path-traced shadows,
and purely local illumination. Figure 8 shows the results.
All versions are able to successfully reconstruct the geom-

Input Views Pixel2Mesh++ Our Refinement

F1 Score 63.9 87.2
Figure 4. Our refinement using a geometry initialization from
inputting 3 views from the 3D-R2N2 dataset [1] (Left) into
Pixel2Mesh++ [8]. The deep reconstruction (Middle) is quite
coarse. We can upsample this initialization using our refinement
pipeline recover much more of the object’s detail, such as its legs,
cushion seams, and sharp edges (Right). Training a neural network
on a large number of views is quite inefficient and, if instead us-
ing these two methods together, largely unnecessary for retrieving
the utmost reconstruction detail. Even the coarse reconstruction
from a 3-view deep network is a sufficient geometry initialization
for our refinement. We report the F1 score of both geometry re-
constructions with a tolerance of 0.05; our pipeline has significant
improvement over its initialization.

View Capture Lighting Capture

Figure 5. Our capture setup. (a) video capture of an object out-
doors with smartphone, (b) acquisition of HDR light probe with
consumer 360 camera.

etry, though introducing full global illumination does im-
prove the result. Both the local and path-traced shadows
methods erroneously darken the surface albedo in valleys
that have self-shadowing. With full global illumination, the
optimizer disambiguate interreflection from surface albedo
and recover better estimates of the texture and the geometry.
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Figure 6. Reconstruction of the Buddha model with a nature tex-
ture, from a target scene where it was inside the Cornell Box. The
optimization used 32 cameras distributed in a Fibonacci sphere,
each with 2 light angles, making for a total of 64 images. The
image resolution was 128× 128. Column 2 shows initializations;
column 4 shows reconstructions under a novel view. Fine geo-
metric details on the model’s head and robes are captured in our
reconstruction, as well as details in the albedo. The target specular
texture exhibits some variation; at the expense of some parts of this
detail, our specular reconstruction matches the artistic preference
of a relatively uniform specular roughness.

8. Additional Simulated Results
Figures 6 and 7 show additional results from reconstruct-

ing simulated objects.
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