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Figure 1: Left: Our imagined social verification setting: Multiple people capture a speaker with their smartphones to verify the
truth of an event, even if one person is digitally manipulating the face (red). Right: Our current proof of concept capture setting.

Abstract

Deepfakes can spread misinformation, defamation, and
propaganda by faking videos of public speakers. We assume
that future deepfakes will be visually indistinguishable from
real video, and will also fool current deepfake detection
methods. As such, we posit a social verification system that
instead validates the truth of an event via a set of videos. To
confirm which, if any, videos are being faked at any point in
time, we check for consistent facial geometry across videos.
We demonstrate that by comparing mouth movement across
views using a combination of PCA and hierarchical clus-
tering, we can detect a deepfake with subtle mouth manip-
ulations out of a set of six videos at high accuracy. Using
our new multi-view dataset of 25 speakers, we show that our
performance gracefully decays as we increase the number
of identically faked videos from different input views.

1. Introduction
Current facial manipulation tools produce video which

can fool humans. While these manipulations can be benign
or humorous, like a transplant of Nicholas Cage’s face onto
every other actor, many manipulations are malicious. With
simple-to-use open-source software, anyone can create con-
vincing propaganda of a politician, can submit manipulated
video as evidence in court, or can post revenge pornography
of an ex. These faked videos of humans are often created
with deep learning [18], and have been dubbed ‘deepfakes.’

Deepfake detection approaches combat the spread of mis-
information. These methods focus on classifying individual
videos as either real or fake, often by detecting visual arti-
facts such as temporal flicker [14, 7, 11]. While state-of-the-
art deepfake generation produces video with minor artifacts,
we hypothesize that in the future these ‘tells’ will be whit-
tled away, and current detection methodologies will struggle.
Consider two videos found online, where one is a real video
of a speaker, and the other is a visually perfect deepfake of
the real video. We assume that we cannot establish which, if
either, of these two videos is unmodified.

To provide an additional tool to combat deepfakes, we
consider detection via social verification at capture time
(Figure 1): the arbiters of truthfulness are a group of video
cameras that synchronously capture a speaker, collectively
reach consensus, and then sign their videos in real time as
‘true’. This setting makes the creation of fakes more difficult
in two ways: 1) attackers must make real time modifications,
and 2) attackers must make modifications which fool the
consensus-driven representation. Forming this representation
is challenging. Cameras must agree that the depiction of the
speaker is the same even though they capture the scene at
different angles, while also rejecting cameras presenting
manipulated content to the group. Further, the operation
to reach consensus must be fast to compute and constitute
a small amount of data for real-time transfer between the
group, e.g., via a peer-to-peer wireless network. However, if
we can accomplish this, then we can ‘crowd-sign’ videos for



authenticity, and provide a basis of truth for verifying other
videos uploaded after the event.

Through this process, we assume that individual cameras
do not trust one another, but that all parties are motivated
to share data with the group by the desire to produce a
trustworthy signed video. We imagine citizen journalists
with no shared affiliation recording a speech at a protest, or a
group of news broadcasters with different political leanings
wishing to protect against video stream hacking. Finally, a
complete solution to this problem would also include an
analysis of the captured audio; our paper currently focuses
on the visual appearance of human speakers only.

Our approach Given n video streams of an event, we
assume that some k videos are manipulated in real time by
an attacker, with 0 ≤ k < n and m = n−k unedited videos.
We assume that m > k, i.e., that the largest set of consistent
videos are unedited. Our goal is to define a measure by which
we can identify the majority of unedited videos. This allows
us to decide to sign videos only when the majority is equal
to the size of the group, or under more relaxed tolerance
constraints, e.g., where one malicious attacker is ostracized.

For this, we look to establish a measure with properties
analogous to the collision-resistance of a cryptographic hash
function. In a cryptographic hash function, multiple inputs
can map to the same output, and any pair of inputs that maps
to the same output is known as a collision. A hash function
is collision-resistant if it is computationally infeasible to ef-
ficiently find a collision in the function. In our visual setting,
we look for a visual hash that can be computed per camera
feed, such that it is difficult to find another ‘meaningfully
visually different but still convincingly manipulated’ video
that has the same hash value.

We experiment with face geometry as a visual hash.
Within our scope, we focus on mouth manipulations, though
our method may generalize to other face part manipulation.
Intuitively, manipulations to the speaker’s mouth shape will
create differences in geometry between edited and unedited
videos. Face 3D geometry will be view invariant, as long as
the speaker’s face is mostly un-occluded for all cameras, and
will be difficult to replicate, since a convincing manipulation
will be reflected in a geometric representation.

First, we collect a multi-view dataset of 25 human speak-
ers from six cameras. Next, we show that off-the-shelf meth-
ods cannot reliably fit two established 3D multi-linear face
models to our videos with sufficient accuracy to detect mouth
differences. Then, we show that a simple and fast variance-
based measure on 2D mouth landmarks, computed per cam-
era as a geometric cue, can detect faked mouth motion in a
way which is robust to angle changes up to at least 65◦, and
is somewhat robust to increasing number of fakes. We show
that this is better than a naive baseline landmark distance
method, and a more complex wavelet-based signal clustering

method. In sum, our work provides evidence that untrusted
social verification systems are possible, and may prove to be
an additional useful tool to combat deepfakes.

Within the span of this work, we contribute:
• A proposal for social verification for this problem space,

• A multi-view video dataset of 25 human speakers in an
indoor environment, with deepfakes of each video which
manipulates participant mouths via speech changes, and

• A distance based on hierarchical clustering of variance in
2D mouth landmark motion over time and across views.

2. Related Work

2.1. 3D face geometry

The human face can be modelled both spatially and tem-
porally. Parametric models are popular, and are typically
constructed from datasets of laser scans [3]. The 3DMM
model is a widely used parameterized face model [6]; it is
represented by a set of shape, texture, and expression param-
eters as coefficients to a basis for the model space. We also
consider the FLAME model, which similarly parameterizes
the face, but uses a more diverse set of input data [12]. In our
experiments, we assess 2D landmark models [4] and fitting
both the 3DMM 2019 and FLAME models to our data.

2.2. Deepfake creation

Current deepfake manipulations include synthesizing a
fully fake face, swapping identities [24], manipulating spe-
cific facial attributes, or transferring expressions [27, 23].
Many deepfake creation methods focus uniquely on iden-
tity swapping, or on a mix of identity and expression swap-
ping [24, 16]. Expression transfer exemplifies more subtle
geometric manipulation than full identity swapping, so to
establish the robustness of our proposed geometry-based
method, we focus on related works on expression transfer.

Expression transfer can be accomplished with auto-
encoders [17], or with GANs paired with a variety of
problem-specific losses and modifications [28, 20, 9]. For
creating our own fakes for analysis, we use LipGAN, a pub-
licly available model which generates a talking face given
a single image or input video, and desired audio output.
K R et al. use this network to automate language agnostic
translation in video with lip synchronization [9].

Some works are not ‘deep.’ Thies et al. create Face2Face
to transfer the expression of a source actor to a target video
in real-time [22]. This method is used to generate a subset
of the fakes in FaceForensics++ [19], a dataset used to train
and evaluate deepfake detection methods. Averbuch-Elor et
al. warp portrait photos to mimic a source video, and transfer
fine details like wrinkles to heighten realism. This work can
generate convincing manipulations as long as there are no
large changes in head pose [2].
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Figure 2: Given a set of time-synchronized input videos with a subset of fakes (red), we first compute 2D facial landmarks per
video. Next, we normalize landmark motion across temporal windows per video, then perform PCA on the landmarks. From
this, we measure the shape variance as the distance of each timestep’s landmarks from the center of PCA space. Finally, we
hierarchically cluster distances per window, and threshold the resulting trees to determine which videos are fake. We illustrate
hierarchical tree cutting in the no fake, one fake, and two fakes scenarios, with the connection height proportional to its cost.

2.3. Deepfake detection
Detection methods primarily focus on finding artifacts

created by sensor noise, compression, or edits. These often
use neural networks to decide whether or not a single video
has been modified, which can overfit to their training data—
the performance of many state-of-the-art detection methods
dramatically decays for in-the-wild scenarios that have large
variation in compression, noise, and blur [27, 23].

The work of Guera et al. combines a CNN for feature
detection and an LSTM for temporal information to predict
if a video is fake given two seconds of input. As their training
set is small, this work is unlikely to generalize to in-the-wild
scenarios [7]. Li et al. look for face warping artifacts caused
by resolution changes between source videos and fake output
videos [14]. Neves et al. show that GANs leave ‘fingerprints’
in the high frequency information of their output videos.
They show that many existing detection methods rely on
detecting these fingerprints, and demonstrate that detection
accuracy drops dramatically when they remove them [15].

Detectors can also be trained on subject behaviors. Li et
al. look at eye blink rates and abnormal physiological cues
to detect fakes [13]. Agarwal et al. show that fakes can be
detected by looking for consistent action unit models for per-
sons of interest. They codify a speaker’s normal behaviors as
clusters in a high dimensional space, and detect fakes if they
fall outside these clusters [1]. However, these approaches
require an existing corpus of data for a particular speaker.

We can aid detection by creating and publicly releasing
training data. Khodabakhsh et al. create a dataset of ma-
nipulated images—Fake Faces in the Wild [11]. Rossler et
al. create FaceForensics++, a dataset of fake videos manipu-
lated using a variety of methods and at different resolutions
to try to overcome detector weakness to the variety of in-the-
wild video. They find that expression transfer methods like
Face2Face are most difficult for humans to detect, which

motivates our use of relatively subtle manipulations in image
content [19]. These datasets are all single view, so they are
not sufficient for our social verification problem space. Most
recently, Jiang et al. create the DeeperForensics-1.0 video
dataset, with a set of diverse actors shot from seven views [8].
This data is not yet publicly available.

One final consideration for detection methods is inter-
pretability. Verdoliva describes that successful detection
methods based on neural networks are hard to interpret,
which is not sufficient for many scenarios where manipu-
lated video could be considered, e.g., legal [27].

3. Method
Suppose a set of C synchronously capturing cameras

c1, ..., ci, ..., cC , where some subset of cameras produce fake
output (Fig. 2). First, we fit landmarks per video per frame
using 2D FAN [4]. For our landmark-based clustering, we
isolate and normalize our landmarks by face part. Given a
set of landmarks per frame {~mci,1, ~mci,2, ..., ~mci,n}, where
each video ci is n frames long, we perform classical prin-
cipal component analysis (PCA) on each set of landmarks
corresponding to a face part (e.g., the mouth) to obtain a sig-
nal per camera which is representative of the variation in face
part motion (Sec. 3.1). Finally, we cluster our PCA results to
separate our cameras into real and fake subsets (Sec. 3.2). As
a comparison, we also outline our 3D model fitting process
(Sec. 3.3), which we use to evaluate parameterized model
fitting (Sec. 4.2).

3.1. Landmark PCA

For each camera ci, we define an n× 2p matrix Mci :

Mci =


~mci,1

~mci,2

...
~mci,n





=


x1,1 y1,1 x2,1 y2,1 . . . xp,1 yp,1
x1,2 y1,2 x2,2 y2,2 . . . xp,2 yp,2

...
...

x1,n y1,n x2,n y2,n . . . xp,n yp,n

 .
Each of the p part landmarks have some (x, y) pixel coor-

dinates per frame. We then perform classical PCA on each
of the matrices Mc1 , ...,McC . Our intuition is that PCA will
be able to capture the underlying variance in the landmark
movement over time, which we can then use to detect anoma-
lies across face part motion. To represent this variation com-
pactly as a signal over time per camera ci, at each frame we
represent the face’s pose as the distance from its projected
position in the PCA subspace for Mci , to the center of that
same PCA subspace. We calculate this length using the Ma-
halanobis distance metric, which can be used to find outliers
in multivariate comparisons. We define this n× 1 distance
vector for ci as ~di, where

~di =

√∑
cols

(Mproj
ci −A)T cov(Mci)

−1(Mproj
ci −A) (1)

Mproj
ci = (Mci − M̄ci)E (2)

In Eq. 2,Mproj
ci represents the data matrix minus its mean

multiplied by the 2p× l eigenvector matrix E of the covari-
ance matrix of that same data matrix. In other words, Mproj

ci
is the centered data matrix projected into PCA space. In
Equation 1, cov(Mci) is the covariance matrix of Mci , and
A is an n× l matrix which represents the 1× l center of the
PCA space of the data matrix with l eigenvectors repeated
n times. Our distance vector is then a sum of the resulting
inner matrix over columns of the inner matrix result.

Intuitively, we quantify the variance of each of the p
(x, y) part landmarks over some set of n frames, with the
understanding that regardless of the pose of the head, if these
variances are similar, the face parts are moving in similar
ways throughout the given set of frames. In this way, we can
robustly quantify unusual face motion (see Figure 3).

We use the Matlab LIBRA toolbox for computing classi-
cal PCA and Mahalanobis distances per frame [25, 26].

3.2. Social verification

We perform hierarchical clustering of our set of vectors
~d1, ~d2, ..., ~dC to obtain a weighted binary tree t. To perform
hierarchical clustering, we first calculate the l2 distance be-
tween all of our leaves, or distance vectors. We pair the two
closest leaves with a parent node, which is then weighted
with the l2 distance between the two leaves. We build a
weighted binary tree by repeatedly joining the two clusters
that contain the two leaves separated by the minimum dis-
tance. We use the final tree’s shape and costs to determine
which, if any, of the inputs are faked, or inconsistent with
the majority (Fig. 2).

Given a tree t with k connections and a distance weight
w per connection, we calculate

φ = wk/wk−1 (3)

Our φ represents the ratio of the cost of the ultimate
and penultimate connections in t. If φ is greater than a set
threshold, we say that there is inconsistency within our input
set of cameras, and at least one fake is present. We then
cluster the tree using a maximum cluster size of two, where
one cluster represents the real inputs, and the other represents
the fakes. The smaller of the two clusters is then called the
fake cluster. If φ is instead below this threshold, we say that
there are no fakes present.

We limit ourselves to the most difficult scenario where any
fakes that are present are manipulated in the exact same way,
and will therefore be clustered as a consistent sub-tree in t. In
the more trivial cases where all of the fakes are manipulated
in different ways, t will have many solitary branches with a
high connection cost. In this scenario, we would calculate φ
moving from the top of the tree down towards the bottom of
the tree, pruning off any section that falls above our threshold.
For the scope of this work, we focus on the most complex
scenario, to ensure that our methodology is feasible and
robust in the worst-case scenario.

3.3. Model fitting

We initially use RingNet, a deep learning method, to fit
the parameterized FLAME model to our video input [21].
However, we found that RingNet was not able to capture
mouth motion well, and appeared to be converging towards a
mean shape for each participant. Some visuals of this fitting
are in Appendix A. We instead frame model fitting for both
3DMM and FLAME as an optimization problem, where
we solve for model parameters and rigid transformation
parameters that minimize the re-projection error of model
vertices to their corresponding 2D landmark locations. Our
results have average re-projection error per pixel on the order
of 10−1. We run this fitting for each of our input videos to
obtain a set of model parameters per frame per video.

4. Experiments
For our method to represent a visual hash, in the loose

cryptographic sense, we need to be certain that our signals
from real cameras are view invariant, and that these signals
are hard to replicate while maintaining a visual dissimilarity
from the real video. We collect data and set up a series of
experiments to test both of these qualities.

4.1. Data

Real-world data We collect multi-view video of 25 par-
ticipants using six Canon EOS T7i Rebel cameras fitted
with 18-55mm lenses. These are arranged in an arc of 65◦
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Figure 3: Our Mahalanobis distances plotted over time. We highlight areas where our clustering results could correctly
differentiate mouth shape. At t1, our real video (blue) and fake video (red) are close by Mahalanobis distance, and the real and
fake corresponding mouth poses are the same. At t2, the fake mouth is open wider, and we see a visual spike in the graph. At
t3, we see our biggest difference between the real and fake mouths, where the fake is open, and the real is closed.

(a) FLAME fit with
all parameters

(b) FLAME fit with
expression parameters

(c) 3DMM fit with
all parameters

(d) 3DMM fit with
expression parameters

Figure 4: To isolate a fake camera from normal fitting variance, the fake camera (red) must be separable from the lines
corresponding to real cameras. Both the FLAME and 3DMM parameter sets are unable to differentiate between the real and
fake geometries. This result holds when comparing both the full parameter vectors, and the expression parameter vectors. We
visualize one standard deviation from the mean.

facing a seated speaker set against a black cloth backdrop.
External lights are used to keep the scene bright, and camera
settings are consistent across all cameras. We capture video
synchronously using a trigger box, where each video is on
average five thousand frames long. Participants are asked
a fixed series of innocuous questions to trigger expressive
responses (e.g., “which do you prefer: dogs or cats?”), with
the goal of collecting video with a variety of expressions.

Deepfake data We use LipGAN [9] to generate our deep-
fake videos. We pass the network our input video, one of
the original camera results, and an audio track from the Lib-
riTTS corpus dataset [29]. LipGAN synthesizes a new video
with modified mouth and jaw area from the input video. This

process creates faked scenarios that are more difficult to de-
tect than an identity swap alone. We create a deepfake for
each of the six real videos per participant, using the same
multi-minute-long audio sequence for all fakes.

Synthetic data As a proof of concept, we determine
whether we are able to capture differences in geometry at the
model level in parameter space. Given an idealized scenario
where fitting a model to video via landmarks is perfect, we
take a mesh represented through the FLAME model, then
warp it in mesh space with two different audio samples using
VOCA [5]. We show that differences in geometry caused by
mouth movement are detectable in the model’s parameter
space in our supplemental, Appendix A.



0 50 100 150 200 250 300 350 400

Window Size

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u

ra
c
y

Detection Accuracy vs Window Size

No Fakes

One Fake

Two Fakes

Three Fakes

(a) Our method’s accuracy

0 50 100 150 200 250 300 350 400

Window Size

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u

ra
c
y

Detection Accuracy vs Window Size

No Fakes

One Fake

Two Fakes

Three Fakes

(b) DWT method’s accuracy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

ROC Curve, Window size = 250

One Fake

Two Fakes

Three Fakes

(c) Our method’s ROC curve
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Figure 5: Accuracy and ROC curves for our method and DWT. Error bars represent one standard deviation from the mean
across all participants. Horizontal error in the ROC curves represents uncertainty in the FPR, and vertical error represents
uncertainty in the TPR. We plot our ROC curves at a fixed window size of 250 frames. In summary, our method has higher
accuracy for all but the smallest window size. Our method is more robust to false positives.

4.2. Experimental Methods

Model evaluation For parameterized models 3DMM and
FLAME to be viable, we must confirm that the parameters
of the fitted models to the fake video are differentiable from
the normal variation in the fits to the real six views.

To compare parameter vectors across videos, we work
in a one vs. all manner. Suppose we have the parameter
vectors ~pc,1, ..., ~pc,n associated with the n frames of cam-
era c. For every frame, we calculate the mean of the Eu-
clidean distances between all pairs of cameras. More for-
mally, for every frame f , and every camera c, we calculate:
1
C

∑
j=1,...,C,j 6=c ‖~pc,f − ~pj,f‖, where we have C cameras.

Fake detection For these experiments, we use the top five
principle components from PCA, l = 5, determined empir-
ically. To test our method, we first generate a fake version
of the second, third, and fourth camera for every subject,
where the fake is as long as the real videos at three and a half
minutes, and is generated using the first 4000 frames of the
real video. These cameras are the most frontal facing, and
therefore have the best LipGAN output quality.

We run two detection experiments, one using full video
sequences, and one using sliding windows. For both experi-
ments, we evaluate two baselines in addition to our method.
The first baseline is a simple measure of how open the mouth

is at a given frame. We take the l2 distance between the
upper and lower lip for each frame of each camera, given
the feature points in the middle of the mouth. Each cam-
era then has a vector of distances, which we hierarchically
cluster as described in Section 3.2. The second baseline is a
direct decomposition of the data matrices Mci using a dis-
crete wavelet transform (DWT). We use the haar wavelet
with the maximum number of levels permitted for the signal
length. Then, we hierarchically cluster the sets of wavelet
coefficients per camera, as described in Section 3.2. We do
not compare against existing detection methods, since we
assume in our problem setup that the fake is already able to
fool single-video-based detectors.

We create four sets of inputs to use for both experiments:
1. Real = {1, 2, 3, 4, 5, 6}
2. Real = {1, 2, 3, 5, 6} and Fake = {4}
3. Real = {1, 2, 5, 6} and Fake = {3, 4}
4. Real = {1, 5, 6} and Fake = {2, 3, 4}

The worst case scenario for our problem space occurs
when we have multiple attackers manipulating video streams
in identical ways, such that the geometry across fakes is
consistent. We test how many fakes we can tolerate in this
setup, while still detecting the correct subset of real videos.

Full Sequence Experiment In the first experiment, we
test whether our method can pick out which, if any, of the



Table 1: Accuracy and false positive rates for the compared methods; DWT and our method have ratio threshold of 1.3. The
landmark-based simple mouth metric fails for all window sizes; DWT performs better; our method consistently performs better
still at all but the smallest window sizes. We bold the highest accuracy per ratio of real to fake inputs for non maximum-window
sizes, and their corresponding false positive rates. We also include whole video window sizes (‘max’). The false positive rate is
not computable for the ‘max’ case since all frames are faked, making false positives and true negatives zero.

Method Window Accuracy for # fakes / # real False positive rate for # fakes / # real
# frames 0 / 6 1 / 5 2 / 4 3 / 3 0 / 6 1 / 5 2 / 4 3 / 3

Simple 50 0.32± 0.03 0.20± 0.06 0.16± 0.03 0.15± 0.03 0.68± 0.03 0.79± 0.03 0.81± 0.03 0.84± 0.02
Mouth 150 0.33± 0.05 0.21± 0.08 0.16± 0.05 0.16± 0.04 0.67± 0.05 0.78± 0.05 0.80± 0.04 0.83± 0.05

250 0.35± 0.08 0.22± 0.10 0.17± 0.06 0.16± 0.05 0.65± 0.08 0.76± 0.07 0.78± 0.08 0.82± 0.06
350 0.35± 0.09 0.22± 0.11 0.19± 0.07 0.17± 0.05 0.65± 0.09 0.75± 0.09 0.75± 0.10 0.81± 0.07
max 0.40± 0.50 0.24± 0.44 0.08± 0.28 0.00± 0.00 - - - -

DWT 50 0.79± 0.09 0.64± 0.15 0.54± 0.15 0.48± 0.13 0.21± 0.09 0.31± 0.15 0.21± 0.10 0.39± 0.14
150 0.87± 0.10 0.66± 0.14 0.58± 0.14 0.53± 0.13 0.13± 0.10 0.28± 0.15 0.16± 0.09 0.32± 0.14
250 0.89± 0.09 0.68± 0.13 0.60± 0.14 0.55± 0.13 0.11± 0.09 0.27± 0.15 0.15± 0.10 0.30± 0.15
350 0.91± 0.09 0.69± 0.13 0.60± 0.13 0.56± 0.14 0.09± 0.09 0.27± 0.16 0.16± 0.12 0.29± 0.17
max 0.60± 0.50 0.48± 0.51 0.36± 0.49 0.28± 0.46 - - - -

Ours 50 0.98 ± 0.02 0.45± 0.05 0.37± 0.03 0.36± 0.02 0.02 ± 0.02 0.03± 0.02 0.04± 0.02 0.04± 0.03
150 0.97± 0.05 0.68± 0.09 0.56± 0.08 0.50± 0.08 0.03± 0.05 0.08± 0.05 0.06± 0.06 0.06± 0.05
250 0.96± 0.06 0.75± 0.10 0.63± 0.09 0.57± 0.08 0.04± 0.06 0.13± 0.07 0.09± 0.08 0.08± 0.07
350 0.95± 0.08 0.77 ± 0.10 0.68 ± 0.09 0.60 ± 0.10 0.05± 0.08 0.18 ± 0.10 0.13 ± 0.10 0.11 ± 0.10
max 0.88± 0.33 1.00± 0.00 0.92± 0.28 0.76± 0.44 - - - -

inputs are fake. Given all four input scenarios, we calculate
a clustering with a threshold of 1.3 for both baselines and
our method. We average our results across the video of all
25 participants.

Sliding Window Experiment In a real-world scenario, we
will not have the luxury of processing three minutes of video
at a time, where one video is fully fake throughout. We
therefore set up a second experiment where we use sliding
windows through time. We increase the complexity of the
fake by interleaving it with its real counterpart. For example,
if camera four is our one fake camera, we use the LipGAN
output for the first and last third of the video, and use the real
camera four data for the middle third of the fake video. We
average our results across the video of all 25 participants.

Tolerance to viewpoint angle We evaluate the pose-
invariance of our method by calculating detection accuracy
over pairs of real cameras which are a fixed number of de-
grees apart. Our input to our method is a pair of real cameras,
and the fake of camera four. We take the average accuracy
over all sets whose real camera pair is separated by the same
angular distance. These results are further compacted as
an average across all 25 participants. We estimate angular
distance between cameras from our real world setup, use a
window size of 250 frames, and use a threshold of 1.3.

4.3. Results

Model accuracy As shown in Figure 4, for both models,
the fake camera (red) is not notably different from the vari-
ance in the fit of the real geometry. This result holds true
regardless of whether we look at the subset of parameters

related to expression. Even though the overall re-projection
error of our fitting methods is low, the landmark-driven fit
to the mouth is not accurate enough to capture the geomet-
ric differences between the real and fake videos. Therefore
this model fitting approach for FLAME and 3DMM is not a
currently viable method for establishing if the cameras are
filming consistent face geometry.

Detection accuracy Based on our results (see Table 1),
we see that in scenarios where we have one video that is
faked at every frame, our method outperforms DWT for
every combination of fakes and reals.

In the windowed experiment, we see in Figure 5, while
the overall accuracy of DWT is similar to that of our method,
its false positive rate is also much more drastic. Our method
is more robust to the scenarios with no fakes. We see that our
method’s performance decays as anticipated as we increase
the number of fake cameras. We test window sizes of 50,
150, 250, and 350 frames. For our ROC curves, we generate
data using thresholds 1.1, 1.3, 1.5, 1.7, 1.9, and 2.1. Our
method, implemented in Matlab on a CPU, runs in 0.0112
seconds on average per 250 frame window.

To better understand how our accuracy results change
over window size, and to visualize where our method fails to
detect a fake, we plot histograms of the number of properly
detected fakes and the number of missed fakes in Figure 6.
The x-axis demonstrates the average l2 difference between
LipGAN’s mouth landmarks and the real video’s mouth
landmarks. Intuitively, when this distance is small, the fake
and real mouths look similar to one another. We see that
when this distance is small, and the window size is also
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Figure 6: As window size increases, our method becomes better at picking out fakes, even when the lip motion of the fake is
visually similar to that of the real mouth. For all histograms, we have one fake, and use a threshold of 1.3.
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Figure 7: Accuracy vs. pairwise camera angle. We compute
clustering accuracy across all pairs of real cameras sepa-
rated by a set number of degrees, plus one fake camera. Our
accuracy remains consistent as angular distance increases,
showing that our results are robust to different camera poses.

small, it is difficult for our method to detect fakes. However,
as the window size increases, our method’s performance
improves dramatically. Most of the error associated occurs
when the motion of the fake and real mouths is similar.

Viewpoint angle As per Figure 7, our detection accuracy
remains stable around 0.65, with a small uptick towards
0.70 for cameras that are closest together. We see through
this experiment that we are also able to detect fakes at 65%
accuracy with window sizes of 250 frames, even though we
have decreased the number of real cameras from six to two.

4.4. Limitations

Our method will not be robust if the mouth itself is small
relative to the overall video size, since that will lead to
smaller and less distinctive mouth motion. We hypothesize
that we see a drop in accuracy between processing full se-
quences and windows for two reasons. The first is that in a
window, we are more beholden to the l2 difference between
the real and fake mouth landmarks. The second is that our

method processes windows independently from one another,
so we do not temporally propagate a fake detection.

However, it is worth noting that for our desired applica-
tion, we seek to have our method running while cameras are
actively filming content. To properly detect a fake, we do not
necessarily have to detect every faked frame perfectly—we
just need to isolate fakes over time with high accuracy, while
keeping all of our real videos in one set.

5. Conclusion
We move towards a social verification system to combat

deepfakes. We can detect mouth manipulations by hierar-
chically clustering signals based on the quick-to-compute
variance of mouth landmark motion in a set of videos. Based
on our experiments, we require a window size of around 8
seconds to detect one fake out of a set of six at 75% accuracy.
As we compute this metric per video, we side-step com-
plex multi-view reconstruction issues, and propose a system
where we rely on majority rule for cross-video consistency
where no individual video needs to have trustworthy content.

Moving forward, we aim to implement the system on a
set of smartphones for real time capture. While expensive to
compute, we also plan to explore latent representations for
the geometry in the video, e.g., comparing face embeddings
in the StyleGAN latent space [10]. Finally, and conceptually,
no technology is a panacea. A social verification system
can still be gamed, e.g., a ‘deepfake flashmob’ could verify
an event given sufficient bad actors. Our work explores the
feasibility of the underlying social verification as a way to
provide an additional tool to combat deepfakes.
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A. Appendix
A.1. Synthetic Data Collection

We collect synchronized video of a seated speaker from
four different views. The speaker is prompted to make a wide
variety of facial expressions, and to turn their head dramat-
ically in the space. FLAME is then fit to each frame using
RingNet. For each frame, we save the shape, expression, and
jaw pose parameters of the FLAME model.

Next, we create synthetic adversarial examples in the
FLAME model space using VOCA. Given a neutral FLAME
model, and an audio sample, VOCA animates the model to
synchronously mouth the audio. We create two fake videos:
In the first, we keep the expression neutralized, and maintain
the shape, or identity-related, parameters. In the second,
we match the average expression across the real videos in
addition to matching the shape parameters (Figure 9).

A.2. Synthetic Data Experiments

We aim to confirm that in an idealized scenario, where we
are perfectly able to capture face geometry from an image
to create a detailed model, that we are able to detect small
changes in mouth pose. First, we need to determine whether
the FLAME models fit across different views look the same.
Qualitatively, we see in Figure 9 that the shape, expression,
and jaw pose remain invariant across views.

In Table 2, we see that a fake video can most easily vary in
jaw pose while remaining undetected. The fit of RingNet is
much more sensitive to the shape and expression parameter
space across views. To determine if our fakes are detectable,
given this sensitivity to the model fitting, we employ a one
versus all approach. For each frame, we look at the l2 dif-
ference between the parameter vectors for every possible
pair of cameras. We use both the expression and jaw pose
parameters alone, and the full set of shape, expression, and
jaw pose parameters.

In Figure 8, we see that if we use expression parameters,
we are only able to isolate the easy fake case from the rest of
the pack. However, if we look at the full set of parameters,
we are able to isolate both the easy and hard fake cases
from our real video, except for a small section at frame 900.
When we plot the mean l2 difference between the set of real
cameras, and sets including different fakes, we see that we
can differentiate between the real and fake cases.

We find that the parameter space is fairly invariant across
our real views. We can also detect fake videos that only differ
from the real videos in mouth pose and expression. These
results demonstrate a proof of concept for using geometric
cues with social verification to detect video manipulation.

Table 2: To detect a fake, the fake must be outside of the
range of normal fitting error among the real cameras. Shape
is most consistent across cameras, and jaw pose, which con-
trols how open the mouth is, has the most variation.

Parameters Mean frame-wise standard
deviation across real cameras

Shape ±0.1037
Expression ±0.2025
Jaw pose ±1.1690

Figure 8: Top: We compare expression parameters of camera
three against all other inputs. While the easy adversarial case
(orange) is separable from most of the real data, the hard
adversarial case (green) is not. Middle: We compare the full
parameter set of camera three against all other inputs. Both
easy and hard fake cases are separable from the real video.
Bottom: We look at the mean frame-wise l2 difference across
the real cameras only (blue), the real cameras and the easy
fake case (yellow), and the real cameras and the hard fake
case (green). We plot one standard deviation from the mean
in all cases. All fake cases are separable from the real cases.



Figure 9: Top: Four input frames from four different views, synchronized in time. Middle: We show the RingNet fitting output,
which stays fairly consistent across views, though it is not able to capture the furrowed brow, or much interesting face shape.
Bottom: On the left, the easy faked case has a neutral expression, and a different viseme from the original input. On the right,
the hard faked case has the averaged expression of the input models, and the new viseme from the easy case.


